Waypoint-Based Human-Tracking Navigation for Museum Guide Robot

Author:

Ichihara Kaito,Hasegawa Tadahiro,Yuta Shin’ichi,Ichikawa Hirohisa,Naruse Yoshihide, ,

Abstract

A visitor-following method that guides visitors as they move around was successfully developed without changing the structure of the waypoint navigation system. We previously developed a guidance robot, “EM-Ro,” to provide guidance services at the ECO35 Muffler Museum, and used the waypoint navigation system to implement a visitor-escort method along a predetermined route. With this visitor-following method, EM-Ro was able to follow a target visitor along visitor-derived waypoints, which were estimated using 2D LiDAR. Thus, the proposed navigation system for the guidance robot provides both visitor-escort and visitor-following guidance services. Using the same waypoint navigation system, it was possible to seamlessly switch between visitor-escort and visitor-following guidance. Switching between prepared or visitor-derived waypoints can make a visitor choose the preferred guidance method. Visitors can switch the guidance method anytime by providing EM-Ro requests from the remote controller. In addition, a guest redetecting method was developed when EM-Ro lost guests. The experimental results at the Muffler Museum showed that both visitor-escort and visitor-following driving by the EM-Ro were successfully demonstrated while guiding guests in the facility.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Personal Guide Robot That Leads a Guest Hand-in-Hand While Keeping a Distance;Sensors;2024-04-07

2. Enhancing Museum Visitor Engagement: Personalized Learning with Adaptive Robot Tutor;2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI);2024-01-25

3. Robotics Evolves the Industry Tourism: Advantages and Challenges;Smart Innovation, Systems and Technologies;2024

4. Navigation System for Personal Mobility Vehicles Following a Cluster of Pedestrians in a Corridor Using Median of Candidate Vectors Observer;Journal of Robotics and Mechatronics;2023-12-20

5. Measuring People's Boredom and Indifference to the Robot's Explanation in a Museum Scenario;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3