Navit(oo)n: Open Source Mobile Robot Project for Nakanoshima Robot Challenge

Author:

Hara Shunya1,Shimizu Toshihiko1,Ozawa Masayoshi1,Sakai Masahiko1,Oyama Tadahiro1,Samuel Amar Julien1

Affiliation:

1. Kobe City College of Technology, 8-3 Gakuen-Higashimachi, Nishi-ku, Kobe 651-2194, Japan

Abstract

Recently, the legislation regarding autonomous mobile robots for outdoor pedestrian areas have been advancing, leading to increased expectations for task automation such as transportation and cleaning. Outdoor environments like parks, where vehicles cannot enter, present many three-dimensional terrains such as stairs and inclined surfaces, causing difficulty in achieving accurate environment recognition and autonomous movement. Furthermore, robots that navigate pedestrian walkways must be smaller and lighter than cars and also have a robust system capable of traversing steps and uneven surfaces and withstanding rainy weather. Currently, robots designed for paved roads are commercially available; however, robots capable of navigating park walkways are still in the research and development stage. Therefore, to accelerate the research and development of outdoor autonomous mobile robots, this study proposes the Navit(oo)n platform, designed for use in outdoor environments. This robot can be manufactured using easily obtainable parts, and all CAD data, circuit design data, and autonomous movement software are provided as open source. This paper introduces an overview of Navit(oo)n that successfully completed the course and achieved all tasks in the recent Nakanoshima Robot Challenge.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference20 articles.

1. S. Hara, T. Shimizu, M. Konishi, R. Yamamura, and S. Ikemoto, “Autonomous mobile robot for outdoor slope using 2D LiDAR with uniaxial gimbal mechanism,” J. Robot. Mechatron., Vol.32, No.6, pp. 1173-1182, 2020. https://doi.org/10.20965/jrm.2020.p1173

2. T. Yoshida, K. Irie, E. Koyanagi, and M. Tomono, “An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry,” Trans. of the Society of Instrument and Control Engineers, Vol.47, No.10, pp. 493-500, 2011 (in Japanese). https://doi.org/10.9746/sicetr.47.493

3. N. Kimura and J. Ota, “Unknown Object Detection Using Floor Height Map for Mobile Robots on Indoor Floor with Non-Horizontal Partial Areas,” J. of the Robotics Society of Japan, Vol.34, No.10, pp. 699-710, 2011 (in Japanese). https://doi.org/10.7210/jrsj.34.699

4. R. Sakai, S. Katsumata, T. Miki, T. Yano, W. Wei, Y. Okadome, N. Chihara, N. Kimura, Y. Nakai, I. Matsuo, and T. Shimizu, “A mobile dual-arm manipulation robot system for stocking and disposing of items in a convenience store by using universal vacuum grippers for grasping items,” Advanced Robotics, Vol.34, Nos.3-4, pp. 219-234, 2020. https://doi.org/10.1080/01691864.2019.1705909

5. I. Matsuo, T. Shimizu, Y. Nakai, M. Kakimoto, Y. Sawasaki, Y. Mori, T. Sugano, S. Ikemoto, and T. Miyamoto, “Q-bot: heavy ob- ject carriage robot for in-house logistics based on universal vacuum gripper,” Advanced Robotics, Vol.34, Nos.3-4, pp. 173-188, 2020. https://doi.org/10.1080/01691864.2019.1709987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3