Development of a Fish-Like Robot with a Continuous and High Frequency Snap-Through Buckling Mechanism Using a Triangular Cam
-
Published:2021-04-20
Issue:2
Volume:33
Page:400-409
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Nakanishi Daisuke,Kobayashi Shoya,Obara Kiichi,Matsumura Shotaro,Sueoka Yuichiro, ,
Abstract
This study focuses on the high maneuverability of fish in water to design a fish-like robot via snap-through buckling. The aim of this study is to improve swimming speed by increasing the frequency at which snap-through buckling occurs. Here, we propose a novel drive mechanism using a triangular cam that can continuously generate snap-through buckling at a high frequency. In addition, we developed a fish-like robot via the proposed mechanism and analyzed the influence of the frequency of snap-through buckling on swimming speed. The results obtained indicate that swimming speed is improved and that the relationship between frequency and swimming speed exhibits a single peak. In other words, the swimming speed is reduced when the frequency is significantly increased. We also determined that swimming speed was improved using a wide elastic thin plate as the driving mechanism.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference17 articles.
1. Y. Takada, K. Koyama, and T. Usami, “Robotic Fish,” J. Robot. Mechatron., Vol.26, No.3, pp. 391-393, 2014. 2. K. Hirata, “Propulsion performance of an experimental fish robot,” Proc. on Spring Conf. of Japan Society for Design Engineering 2000, pp. 163-166, 2000 (in Japanese). 3. Y. Takada, T. Nakamura, K. Koyama, and T. Wakisaka, “Self-position Estimation of Small Fish Robot Based on Visual Information from Camera,” J. of the JIME, Vol.47, No.3, pp. 138-144, 2012. 4. C. Rossi, J. Colorado, W. Coral, and A. Barrientos, “Bending continuous structures with SMAs: a novel robotic fish design,” Bioinspiration & biomimetics, Vol.6, No.4, 045005, 2011. 5. R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration of underwater life with an acoustically controlled soft robotic fish,” Science Robotics, Vol.3, No.16, eaar3449, 2018.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|