Development of a Fish-Like Robot with a Continuous and High Frequency Snap-Through Buckling Mechanism Using a Triangular Cam

Author:

Nakanishi Daisuke,Kobayashi Shoya,Obara Kiichi,Matsumura Shotaro,Sueoka Yuichiro, ,

Abstract

This study focuses on the high maneuverability of fish in water to design a fish-like robot via snap-through buckling. The aim of this study is to improve swimming speed by increasing the frequency at which snap-through buckling occurs. Here, we propose a novel drive mechanism using a triangular cam that can continuously generate snap-through buckling at a high frequency. In addition, we developed a fish-like robot via the proposed mechanism and analyzed the influence of the frequency of snap-through buckling on swimming speed. The results obtained indicate that swimming speed is improved and that the relationship between frequency and swimming speed exhibits a single peak. In other words, the swimming speed is reduced when the frequency is significantly increased. We also determined that swimming speed was improved using a wide elastic thin plate as the driving mechanism.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference17 articles.

1. Y. Takada, K. Koyama, and T. Usami, “Robotic Fish,” J. Robot. Mechatron., Vol.26, No.3, pp. 391-393, 2014.

2. K. Hirata, “Propulsion performance of an experimental fish robot,” Proc. on Spring Conf. of Japan Society for Design Engineering 2000, pp. 163-166, 2000 (in Japanese).

3. Y. Takada, T. Nakamura, K. Koyama, and T. Wakisaka, “Self-position Estimation of Small Fish Robot Based on Visual Information from Camera,” J. of the JIME, Vol.47, No.3, pp. 138-144, 2012.

4. C. Rossi, J. Colorado, W. Coral, and A. Barrientos, “Bending continuous structures with SMAs: a novel robotic fish design,” Bioinspiration & biomimetics, Vol.6, No.4, 045005, 2011.

5. R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration of underwater life with an acoustically controlled soft robotic fish,” Science Robotics, Vol.3, No.16, eaar3449, 2018.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Continuous Snap-through Buckling Driven Fish Robot with Large Trapezoidal Elastic Sheet;Transactions of the Society of Instrument and Control Engineers;2024

2. Fish-Like Robot with a Deformable Body Fabricated Using a Silicone Mold;Journal of Robotics and Mechatronics;2022-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3