Abstract
This paper describes a fish-like robot with a deformable outer shell fabricated using a silicone mold. Based on the difference in the contact condition between the serial-link robot and the shell, the fabrication methods are classified into embedded type and skin type. This study analyzes the mechanical properties of embedded and skin-type underwater robots from the viewpoint of material mechanics. A low-torque motor can sufficiently drive the skin-type underwater robot if the friction coefficient and pressure between the skin and the link are appropriately selected. Furthermore, the outer skin of the fish-like robot can be easily fabricated by defoaming in the chamber of a vacuum-packaging machine. Finally, the performance of the skin-type robot in air and underwater was assessed through several experiments.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference26 articles.
1. I. Yamamoto and Y. Terada, “Robotic fish and its technology,” Proc. SICE Annual Conf., Vol.1, pp. 342-345, 2003.
2. H. Sumoto and S. Yamaguchi, “Development of a motion control system using photoaxis for a fish type robot,” Proc. of the Int. Offshore and Polar Engineering Conf., pp. 307-310, 2010.
3. J. Conte, Y. Modarres-Sadeghi, M. Watts, F. S. Hover, and M. S. Triantafyllou, “A faststarting mechanical fish that accelerates at 40 m/s2,” Bioinspiration and Biomimetics, Vol.5, Issue 3, 035004, 2010.
4. N. Kato and H. Liu, “Optimization of motion of a mechanical pectoral fin,” JSME Int. J., Series C, Vol.46, No.4, pp. 1356-1362, 2003.
5. F. Xie, Z. Li, Y. Ding, Y. Zhong, and R. Du, “An Experimental Study on the Fish Body Flapping Patterns by Using a Biomimetic Robot Fish,” IEEE Robotics and Automation Letters, Vol.5, Issue 1, pp. 64-71, 2020.