Vacuum End Effector Equipped with an Expansion and Contraction Mechanism Using a Wound Thin Metal Plate

Author:

Tanaka Junya,

Abstract

We propose a vacuum end effector with an expansion and contraction mechanism to realize a picking task for objects placed in a narrow space, such as a shelf. The proposed expansion and contraction mechanism consists of a tube and exoskeleton structure and is characterized by the use of a thin metal plate wound about itself to form a tubular exoskeleton. Expansion and contraction motions were realized by connecting the tube to a linear motion mechanism. The expansion and contraction mechanism can be easily extended by elastic force. In addition, the shape of the expansion and contraction mechanism is created by winding a thin metal plate around a predetermined axis, which ensures high rigidity even in the extended state. Even when an object to be picked from a shelf is located behind other objects, the end effector can efficiently hold the object because of its elongated shape and ability to freely change the position of the suction pad using a direction-changing linkage and the expansion and contraction mechanism. The developed end effector weighs about 1.46 kg and can carry a load of 0.56 kg when extended to 150 mm. Verification of the mechanism confirmed that the developed end effector is useful because it can perform the expected object-picking operation.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3