Development of Semi-Crouching Assistive Device Using Pneumatic Artificial Muscle

Author:

Saito Naoki,Furukawa Daisuke,Satoh Toshiyuki,Saga Norihiko, , ,

Abstract

This paper describes a semi-crouching assistive device using pneumatic artificial muscles. The goal of this device is to reduce the load on the lower back when performing work in the semi-crouching position. The load on the lower back is reduced by decreasing the compressive pressure on the lumbar disk of the lower back. This compressive pressure increases as the contraction force of the erector spine increases. Therefore, it is important to reduce the muscle activity of the erector spine. Based on the analytical result of a worker’s position model, the proposed device adopts a scheme to push the chest of the user as an appropriate assistive method. Additionally, the analytical result shows that a reduction in weight of the device is also important for decreasing the load on the lower back. Based on these results, we prototyped a lightweight semi-crouching assistive device that can generate sufficient assistive force via a pneumatic artificial muscle, which has high power to weight ratio. This device was experimentally evaluated via electromyogram of the erector spine when the user maintains a semi-crouching position. The experimental results confirmed the usefulness of this device.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference16 articles.

1. Y. Sankai, “Leading Edge of Cybernics: Robot Suit HAL,” Proc. SICE-ICASE Int. Joint Conf. 2006, pp. 1-2, 2006.

2. S. Toyama and J. Yonetake, “Development of the Ultrasonic Motor-Powered Assisted Suit System,” J. Soc. of Biomech., Vol.34, No.4, pp. 184-188, 2006.

3. Y. T. Liao, T. Ishioka, K. Mishima, C. Kanda, K. Kodama, and E. Tanaka, “Development and Evaluation of a Close-Fitting Assistive Suit for Back and Arm Muscle – e.z.UP® –,” J. Robot. Mechatron., Vol.32, No.1, pp. 157-172, 2020.

4. M. Kashima, H. Arakawa, S. Kimura, R. Nishihama, K. Yokoyama, I. Kikutani, and T. Nakamura, “Development of Assist Suit for Squat Lifting Support Considering Gait and Quantitative Evaluation by Three-Dimensional Motion Analysis,” J. Robot. Mechatron., Vol.32, No.1, pp. 209-219, 2020.

5. Y. Imamura, T. Tanaka, Y. Suzuki, K. Takizawa, and M. Yamanaka, “Analysis of Trunk Stabilization Effect by Passive Power-Assist Device,” J. Robot. Mechatron., Vol.26, No.6, pp. 791-798, 2014.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3