Author:
Nagaya Shigeki, ,Chenli Zhang,Hasegawa Osamu
Abstract
The novel method [1] we propose for predicting stock prices is a case-based reasoning predictor based on associative stock price data memory using Self-Organizing and IncrementalNeural Networks (SOINN) [2]. When a user inputs stock price data, the predictor outputs the most likely prediction based on statistically summarizing similar stock price pattern. It also outputs all cases included in the prediction. Our method has following advantages: (a) our predictor gives users grounds by giving all cases consisting of the prediction using associative memory. Users thereby recognize and are ready for prediction risk. (b) Our predictor avoids large prediction failures because it modifies itself through online learning and continues to learn without its learning parameters being reassigned. This makes it much safer where investment loss may be large. (c) Our predictor is as profitable as previous work while realizing unique, useful functions, as shown by experimental results using actual stock price data from the US and Japan markets between 1998 and 2005.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献