Author:
Thanh Hoang T. P., ,Meesad Phayung,
Abstract
Predicting the behaviors of the stock markets are always an interesting topic for not only financial investors but also scholars and professionals from different fields, because successful prediction can help investors to yield significant profits. Previous researchers have shown the strong correlation between financial news and their impacts to the movements of stock prices. This paper proposes an approach of using time series analysis and text mining techniques to predict daily stock market trends. The research is conducted with the utilization of a database containing stock index prices and news articles collected from Vietnam websites over 3 years from 2010 to 2012. A robust feature selection and a strong machine learning algorithm are able to lift the forecasting accuracy. By combining Linear Support Vector Machine Weight and Support Vector Machine algorithm, this proposed approach can enhance the prediction accuracy significantly above those of related research approaches. The results show that data set represented by 42 features achieves the highest accuracy by using one-against-one Support Vector Machines (up to 75%) and one-against-one method outperforms one-againstall method in almost all case studies.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference32 articles.
1. V. Singal, “Beyond the random walk: A guide to stock market anomalies and low-risk investing,” Oxford University Press, New York, 2004.
2. Q. Wen, Z. Yang, Y. Song, and P. Jia, “Automatic stock decision support system based on box theory and SVM algorithm,” Expert Systems with Applications 37, pp. 1015-1022, 2010.
3. R. Tsaih, Y. Hsu, and C. C. Lai, “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems 23, pp. 161-174, 1998.
4. K. Kim and I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index,” Expert Systems with Applications, pp. 125-132, 2000.
5. S. Nagaya, Z. Chenli, and O. Hasegawa, “A Proposal of Stock Price Predictor Using Associated Memory,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.15, No.2, pp. 145-155, 2011.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献