Stock Market Trend Prediction Based on Text Mining of Corporate Web and Time Series Data

Author:

Thanh Hoang T. P., ,Meesad Phayung,

Abstract

Predicting the behaviors of the stock markets are always an interesting topic for not only financial investors but also scholars and professionals from different fields, because successful prediction can help investors to yield significant profits. Previous researchers have shown the strong correlation between financial news and their impacts to the movements of stock prices. This paper proposes an approach of using time series analysis and text mining techniques to predict daily stock market trends. The research is conducted with the utilization of a database containing stock index prices and news articles collected from Vietnam websites over 3 years from 2010 to 2012. A robust feature selection and a strong machine learning algorithm are able to lift the forecasting accuracy. By combining Linear Support Vector Machine Weight and Support Vector Machine algorithm, this proposed approach can enhance the prediction accuracy significantly above those of related research approaches. The results show that data set represented by 42 features achieves the highest accuracy by using one-against-one Support Vector Machines (up to 75%) and one-against-one method outperforms one-againstall method in almost all case studies.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid model for stock price prediction based on multi-view heterogeneous data;Financial Innovation;2024-02-29

2. Comparative research on multi-source heterogeneous data fusion technologies;Procedia Computer Science;2024

3. Data Processing and Feature Engineering for Stock Price Trend Prediction;Studies in Systems, Decision and Control;2024

4. Market Forecasting by Variable Selection of Indicators and Emotion Scores from Text Data;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-05-20

5. Comparative Sentiment Analysis on Stock Market News Using Machine Learning;Intelligent Computing Techniques for Smart Energy Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3