Predicting Stock Movements: Using Multiresolution Wavelet Reconstruction and Deep Learning in Neural Networks

Author:

Peng Lifang,Chen Kefu,Li Ning

Abstract

Stock movement prediction is important in the financial world because investors want to observe trends in stock prices before making investment decisions. However, given the non-linear non-stationary financial time series characteristics of stock prices, this remains an extremely challenging task. A wavelet is a mathematical function used to divide a given function or continuous-time signal into different scale components. Wavelet analysis has good time-frequency local characteristics and good zooming capability for non-stationary random signals. However, the application of the wavelet theory is generally limited to a small scale. The neural networks method is a powerful tool to deal with large-scale problems. Therefore, the combination of neural networks and wavelet analysis becomes more applicable for stock behavior prediction. To rebuild the signals in multiple scales, and filter the measurement noise, a forecasting model based on a stock price time series was provided, employing multiresolution analysis (MRA). Then, the deep learning in the neural network method was used to train and test the empirical data. To explain the fundamental concepts, a conceptual analysis of similar algorithms was performed. The data set for the experiment was chosen to capture a wide range of stock movements from 1 January 2009 to 31 December 2017. Comparison analyses between the algorithms and industries were conducted to show that the method is stable and reliable. This study focused on medium-term stock predictions to predict future stock behavior over 11 days of horizons. Our test results showed a 75% hit rate, on average, for all industries, in terms of US stocks on FORTUNE Global 500. We confirmed the effectiveness of our model and method based on the findings of the empirical research. This study’s primary contribution is to demonstrate the reconstruction model of the stock time series and to perform recurrent neural networks using the deep learning method. Our findings fill an academic research gap, by demonstrating that deep learning can be used to predict stock movement.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3