Author:
Nagayoshi Masato,Elderton Simon J. H.,Sakakibara Kazutoshi,Tamaki Hisashi, , ,
Abstract
In this paper, we introduce an autonomous decentralized method for directing multiple automated guided vehicles (AGVs) in response to uncertain delivery requests. The transportation route plans of AGVs are expected to minimize the transportation time while preventing collisions between the AGVs in the system. In this method, each AGV as an agent computes its transportation route by referring to the static path information. If potential collisions are detected, one of the two agents chosen by a negotiation-rule modifies its route plan. Here, we propose a reinforcement learning approach for improving the negotiation-rules. Then, we confirm the effectiveness of the proposed approach based on the results of computational experiments.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献