Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning

Author:

Ye Xianfeng1ORCID,Deng Zhiyun1,Shi Yanjun2,Shen Weiming1ORCID

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China

Abstract

This paper presents a multi-agent reinforcement learning (MARL) algorithm to address the scheduling and routing problems of multiple automated guided vehicles (AGVs), with the goal of minimizing overall energy consumption. The proposed algorithm is developed based on the multi-agent deep deterministic policy gradient (MADDPG) algorithm, with modifications made to the action and state space to fit the setting of AGV activities. While previous studies overlooked the energy efficiency of AGVs, this paper develops a well-designed reward function that helps to optimize the overall energy consumption required to fulfill all tasks. Moreover, we incorporate the e-greedy exploration strategy into the proposed algorithm to balance exploration and exploitation during training, which helps it converge faster and achieve better performance. The proposed MARL algorithm is equipped with carefully selected parameters that aid in avoiding obstacles, speeding up path planning, and achieving minimal energy consumption. To demonstrate the effectiveness of the proposed algorithm, three types of numerical experiments including the ϵ-greedy MADDPG, MADDPG, and Q-Learning methods were conducted. The results show that the proposed algorithm can effectively solve the multi-AGV task assignment and path planning problems, and the energy consumption results show that the planned routes can effectively improve energy efficiency.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3