Author:
Betancourt Janet Pomares, ,Fatichah Chastine,Tangel Martin Leonard,Yan Fei,Sanchez Jesus Adrian Garcia,Dong Fang-Yan,Hirota Kaoru,
Abstract
A method for ECG and capnogram signals classification is proposed based on fuzzy similarity evaluation, where shape exchange algorithm and fuzzy inference are combined. It aims to be applied to quasi-periodic biomedical signals and has low computational cost. On the experiments for atrial fibrillation (AF) classification using two databases: MIT-BIH AF and MITBIH Normal Sinus Rhythm, values of 100%, 94.4%, and 97.6% for sensitivity, specificity, and accuracy respectively, and execution time of 0.6 s are obtained. The proposal is capable of been extended to classify different diseases, from ECG and capnogram signals, such as: Brugada syndrome, AV block, hypoventilation, and asthma among others to be implemented in low computational resources devices.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献