Author:
Abuhasel Khaled A., ,Iliyasu Abdullah M.,Fatichah Chastine, ,
Abstract
A hybrid particle swarm optimization (PSO) integrating neural network with fuzzy membership function (NEWFM) technique is proposed for epileptic seizure classification tasks based on brain electroencephalography (EEG) signals. By combining PSO and NEWFM, the proposed method obtains the optimal parameters from the EEG data training required to achieve the best accuracy in disease diagnosis. NEWFM, a model of neural networks, is expected to improve the accuracy by updating weights of fuzzy membership functions. The PSO, a swarm-inspired optimization algorithm, is used to obtain the optimal parameters from the NEWFM. A standard dataset comprising of 5 sets of epileptic seizure detection data, each consisting 100 single EEGs segments is employed to evaluate the proposed technique’s performance. Based on the experiments, the classification results show that the best accuracy of Z–S classification task is 99.5% with the optimal parameters of α = 0.1 and β=0.1. For the ZNF–S classification task, the best accuracy is 97.73% with the optimal parameters of α=0.1 or 0.2 and β =0.2. Similar results for the ZNFO–S classification task is 97.64% with the optimal parameters set at α =0.1 or 0.2 and β = 0.1.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference24 articles.
1. N. Fisher, S. Talathi, A. Cadotte, and P. R. Carney, “Epilepsy detection and monitoring,” Quantitative EEG Analysis Methods and Clinical Applications, Artech House Publishers, pp. 157-183, 2008.
2. J. P. Betancourt, C. Fatichah, M. L. Tangel, F. Yan, A. Garcia, F. Dong, and K. Hirota, “Similarity-based fuzzy classification of ECG and capnogram signals,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.17, No.2, pp. 302-310, 2013.
3. R. HariKumar and T. Vijayakumar, “Performance analysis of patient specific elman-chaotic optimization model for fuzzy based epilepsy risk level classification from EEG signals,” Int. J. on Smart Sensing And Intelligent Systems, Vol.2, No.4, 2009.
4. U. Orhan, M. Hekim, M. Ozer, and I. Provaznik, “Epilepsy diagnosis using probability density functions of EEG signals,” Innovations in Intelligent Systems and Applications (INISTA), Istanbul, Turkey, pp. 626-630, 15-18 June, 2011.
5. L. Guo, D. Rivero, J. Dorado, J. R. Rabu nal, and A. Pazos, “Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks,” J. of Neuroscience Methods, Vol.191, pp. 101-109, 2010.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献