Author:
Li Tianyu, ,Dong Fangyan,Hirota Kaoru,
Abstract
A fuzzy association rule mining based method is proposed for myocardial ischemia diagnosis on ECG signals. The proposal provides interpretable and understandable information to doctors as an assistant reference, while rule mining on fuzzy itemsets guarantees that the feature segmentation before rule extraction is feasible and effective. A set of fuzzy association rules is mined through experiments on data from the European ST-T Database, and classification results of myocardial ischemia and normal heartbeats on the test dataset using the extracted rules obtained values of 83.4%, 80.7%, and 81.4% for sensitivity, specificity, and accuracy, respectively. The proposed method aims to become a helpful tool to accelerate the diagnosis of myocardial ischemia on ECG signal, and to be expanded to other heart disease diagnosis areas such as hypertensive heart disease and arrhythmia.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference20 articles.
1. I. Babaoglu, O. Findik, and M. Bayrak, “Effects of principle component analysis on assessment of coronary artery diseases using support vector machine,” Expert Systems with Applications, Vol.37, No.3, pp. 2182-2185, March 2010.
2. J. Park, W. Pedrycz, and M. Jeon, “Ischemia episode detection in ECG using kernel density estimation, support vector machine and feature selection,” BioMedical Engineering OnLine, June 2012.
3. N. Maglaveras, T. Stamkopoulos, C. Pappas, and M. G. Strintzis, “An Adaptive Backpropagation Neural Network for Real-Time Ischemia Episodes Detection: Development and Performance Analysis using the European ST-T Database,” IEEE Trans. on Biomedical Engineering, Vol.45, No.7, pp. 805-813, 1998.
4. S. Papadimitriou, S. Mavroudi, L. Vladutu, and A. Bezerianos, “Ischemia Detection with a Self-Organizing Map Supplemented by Supervised Learning,” IEEE Trans. on Neural Networks, Vol.12, No.3, pp. 503-515, 2001.
5. R. V. Andreao, B. Dorizzi, J. Boudy, and J. Mota, “ST-segment Analysis using Hidden Markov Model Beat Segmentation: Approach to Ischemia Detection,” Computers in Cardiology, pp. 381-384, Sep 19-22, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献