Author:
Toda Yuichiro, ,Matsuno Takayuki,Minami Mamoru
Abstract
Hierarchical topological structure learning methods are expected to be developed in the field of data mining for extracting multiscale topological structures from an unknown dataset. However, most methods require user-defined parameters, and it is difficult for users to determine these parameters and effectively utilize the method. In this paper, we propose a new parameter-less hierarchical topological structure learning method based on growing neural gas (GNG). First, we propose batch learning GNG (BL-GNG) to improve the learning convergence and reduce the user-designed parameters in GNG. BL-GNG uses an objective function based on fuzzy C-means to improve the learning convergence. Next, we propose multilayer BL-GNG (MBL-GNG), which is a parameter-less unsupervised learning algorithm based on hierarchical topological structure learning. In MBL-GNG, the input data of each layer uses parent nodes to learn more abstract topological structures from the dataset. Furthermore, MBL-GNG can automatically determine the number of nodes and layers according to the data distribution. Finally, we conducted several experiments to evaluate our proposed method by comparing it with other hierarchical approaches and discuss the effectiveness of our proposed method.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference40 articles.
1. R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” 2nd edition, John Wiley & Sons, 2012.
2. D. V. Prokhorov, L. A. Feldkamp, and T. M. Feldkamp, “A new approach to cluster-weighted modeling,” Int. Joint Conf. on Neural Networks Proc. (IJCNN’01), 2001.
3. F. Nie, Z. Zeng, I. W. Tsang, D. Xu, and C. Zhang, “Spectral Embedded Clustering: A Framework for In-Sample and Out-of-Sample Spectral Clustering,” IEEE Trans. on Neural Networks, Vol.22, No.11, pp. 1796-1808, 2011.
4. H. Truong, L. Ngo, and L. Pham, “Interval Type-2 Fuzzy Possibilistic C-Means Clustering Based on Granular Gravitational Forces and Particle Swarm Optimization,” J. Adv. Comput. Intell. Intell. Inform., Vol.23, No.3, pp. 592-601, 2019.
5. Y. Hamasuna, S. Nakano, R. Ozaki, and Y. Endo, “Cluster Validity Measures Based Agglomerative Hierarchical Clustering for Network Data,” J. Adv. Comput. Intell. Intell. Inform., Vol.23, No.3, pp. 577-583, 2019.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献