Multilayer Batch Learning Growing Neural Gas for Learning Multiscale Topologies

Author:

Toda Yuichiro, ,Matsuno Takayuki,Minami Mamoru

Abstract

Hierarchical topological structure learning methods are expected to be developed in the field of data mining for extracting multiscale topological structures from an unknown dataset. However, most methods require user-defined parameters, and it is difficult for users to determine these parameters and effectively utilize the method. In this paper, we propose a new parameter-less hierarchical topological structure learning method based on growing neural gas (GNG). First, we propose batch learning GNG (BL-GNG) to improve the learning convergence and reduce the user-designed parameters in GNG. BL-GNG uses an objective function based on fuzzy C-means to improve the learning convergence. Next, we propose multilayer BL-GNG (MBL-GNG), which is a parameter-less unsupervised learning algorithm based on hierarchical topological structure learning. In MBL-GNG, the input data of each layer uses parent nodes to learn more abstract topological structures from the dataset. Furthermore, MBL-GNG can automatically determine the number of nodes and layers according to the data distribution. Finally, we conducted several experiments to evaluate our proposed method by comparing it with other hierarchical approaches and discuss the effectiveness of our proposed method.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Topological Mapping for Embedded Computers with Growing Neural Gas;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Distributed Batch Learning of Growing Neural Gas for Quick and Efficient Clustering;Mathematics;2024-06-20

3. Fast Multi-scale Batch-Learning Growing Neural Gas;Topics in Intelligent Engineering and Informatics;2024

4. Growing Neural Gas based Traversability Clustering for an Autonomous Robot;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

5. Multi-Scale Batch-Learning Growing Neural Gas Efficiently for Dynamic Data Distributions;International Journal of Automation Technology;2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3