Multi-Scale Batch-Learning Growing Neural Gas Efficiently for Dynamic Data Distributions

Author:

Ardilla Fernando1,Saputra Azhar Aulia1ORCID,Kubota Naoyuki1ORCID

Affiliation:

1. Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan

Abstract

Growing neural gas (GNG) has many applications, including topology preservation, feature extraction, dynamic adaptation, clustering, and dimensionality reduction. These methods have broad applicability in extracting the topological structure of 3D point clouds, enabling unsupervised motion estimation, and depicting objects within a scene. Furthermore, multi-scale batch-learning GNG (MS-BL-GNG) has improved learning convergence. However, it is only implemented on static or stationary datasets, and adapting to dynamic data remains difficult. Similarly, the learning rate cannot be increased if new nodes are added to the existing network after accumulating errors in the sampling data. Next, we propose a new growth approach that, when applied to MS-BL-GNG, significantly increases the learning speed and adaptability of dynamic data distribution input patterns. This method immediately adds data samples as new nodes to existing networks. The probability of adding a new node is determined by the distance between the first, second, and third closest nodes. We applied our method for monitoring a moving object at its pace to demonstrate the usefulness of the proposed model. In addition, optimization methods are used such that processing can be performed in real-time.

Funder

Japan Science and Technology Agency

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3