Improved Pedestrian Detection Algorithm Based on YOLOv5s

Author:

Li Zhihua12,Zhang Yuanbiao12,Wang Chao12,Tan Guopeng12,Yan Yahui3

Affiliation:

1. School of Electronic and Information Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and Technological Development Zone, Handan, Hebei 056038, China

2. Hebei Key Laboratory of Security & Protection Information Sensing and Processing, No.19 Taiji Road, Handan Economic and Technological Development Zone, Handan, Hebei 056038, China

3. Xinxing Hebei Engineering and Research Inc., Ltd., No.309 Xunzi North Street, Economic Development Zone, Handan, Hebei 056008, China

Abstract

In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with YOLOv5s. First, a minimum scale detection layer has been added to deepen the pyramid’s depth and enhance detection accuracy. Second, ghost convolution has been employed to replace standard convolution to increase real-time performance of the algorithm. Finally, depth separable convolution has been used to address issues of high parameters and large computational complexity that lower the efficiency of the algorithm. Experiment results demonstrate that the detection accuracy of the YOLOv5s-PGD algorithm on the CrowdHuman public dataset is up to 85.1%, which is 2.2% higher than that of YOLOv5s. Furthermore, the number of parameters has decreased by 19.7%, and the calculation burden has decreased by 2.5%. Consequently, the proposed YOLOv5s-PGD algorithm better satisfies the requirements of real-time detection, model optimization, and terminal deployment in dense pedestrian scenarios.

Funder

Handan Science and Technology R&D Program Project Fund

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3