Abstract
Abstract
Target detection is a hot topic in the field of artificial intelligence, which is widely used in robot, UAV, aerospace and other fields. In this paper, the research background and significance of target detection are summarized, and two categories of target detection algorithms based on deep learning, i.e., candidate region based and regression based, are described. For the first category, a series of region with convolutional neural network (r-cnn) algorithms are introduced, this paper introduces the researchers’ research on the basis of r-cnn algorithm: the improvement of feature extraction network, pooling layer of region of interest and non-maximum suppression algorithm. The second algorithm is divided into Yolo (you only look once) series, SSD (single shot multibox detector) algorithm and its improvement. According to the current target detection algorithm in the development of more efficient and reasonable development trend, the research hotspot of target detection algorithm in the future is prospected, including unsupervised and unknown class object detection.
Subject
General Physics and Astronomy
Reference13 articles.
1. Classification and regression byrandom-forest;Liaw;Rnews
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献