Survey of Target Detection Based on Neural Network

Author:

Deng Bao,Lv Hao

Abstract

Abstract Target detection is a hot topic in the field of artificial intelligence, which is widely used in robot, UAV, aerospace and other fields. In this paper, the research background and significance of target detection are summarized, and two categories of target detection algorithms based on deep learning, i.e., candidate region based and regression based, are described. For the first category, a series of region with convolutional neural network (r-cnn) algorithms are introduced, this paper introduces the researchers’ research on the basis of r-cnn algorithm: the improvement of feature extraction network, pooling layer of region of interest and non-maximum suppression algorithm. The second algorithm is divided into Yolo (you only look once) series, SSD (single shot multibox detector) algorithm and its improvement. According to the current target detection algorithm in the development of more efficient and reasonable development trend, the research hotspot of target detection algorithm in the future is prospected, including unsupervised and unknown class object detection.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Classification and regression byrandom-forest;Liaw;Rnews

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Pedestrian Detection Algorithm Based on YOLOv5s;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-07-20

2. A lightweight road crack detection algorithm based on improved YOLOv7 model;Signal, Image and Video Processing;2024-04-25

3. YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning;Plants;2023-08-07

4. Research on Violence Detection Algorithm based on Multi-UAV;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

5. A Monocular Vision Ranging Method Related to Neural Networks;Advances and Trends in Artificial Intelligence. Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3