Influence of Object Detection in Deep Learning

Author:

Yu Rui, ,Xu Xiangyang,Wang Zhigang

Abstract

We herein investigate the influence of object detection in deep learning. Based on using one neural network model and maintaining its primary network structure, we discuss the relationship between the detection accuracy with the scale of the training dataset and the network depth and width. We adopt the single factor experiment for each influence factor and create a test dataset including different types of object pictures. After each experiment, we first predict the average precision for the validation dataset and subsequently test the target pictures. The results of the experiment reveal that it is effective to improve the accuracy by enriching the training dataset. The more necessary features the training dataset has, the more precise are the results. Therefore, the network structure is a crucial factor, and adopting advanced models could be beneficial to obtain an excellent performance on sophisticated targets.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Pedestrian Detection Algorithm Based on YOLOv5s;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-07-20

2. Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-09-20

3. An Approach to NMT Re-Ranking Using Sequence-Labeling for Grammatical Error Correction;Journal of Advanced Computational Intelligence and Intelligent Informatics;2020-07-20

4. Conditional Generative Adversarial Networks to Model iPSC-Derived Cancer Stem Cells;Journal of Advanced Computational Intelligence and Intelligent Informatics;2020-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3