Author:
Hu Jinglu, ,Hirasawa Kotaro,Murata Junichi
Abstract
This paper presents a novel random search, RasID, for neural network training, that introduces a sophisticated probability density function (PDF) in a random search for generating search vectors. The PDF provides two parameters to control local search ranges and directions efficiently. This realizes an intensified search where it is easy to find good solutions locally or a diversified search to escape local minima based on success-failure of past searches. Local gradients, if available, and trend information on the criterion function surface are used to improve search performance. The proposed scheme is applied to layered neural network training and is benchmarked against deterministic and nondeterministic methods.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献