Optimization Method RasID-GA for Numerical Constrained Optimization Problems

Author:

Sohn Dongkyu, ,Mabu Shingo,Hirasawa Kotaro,Hu Jinglu

Abstract

This paper proposes Adaptive Random search with Intensification and Diversification combined with Genetic Algorithm (RasID-GA) for constrained optimization. In the previous work, we proposed RasID-GA which combines the best properties of RasID and Genetic Algorithm for unconstrained optimization problems. In general, it is very difficult to find an optimal solution for constrained optimization problems because their feasible solution space is very limited and they should consider the objective functions and constraint conditions. The conventional constrained optimization methods usually use penalty functions to solve given problems. But, it is generally recognized that the penalty function is hard to handle in terms of the balance between penalty functions and objective functions. In this paper, we propose a constrained optimization method using RasID-GA, which solves given problems without using penalty functions. The proposed method is tested and compared with Evolution Strategy with Stochastic Ranking using well-known 11 benchmark problems with constraints. From the Simulation results, RasID-GA can find an optimal solution or approximate solutions without using penalty functions.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3