Author:
Sohn Dongkyu, ,Hatakeyama Hiroyuki,Mabu Shingo,Hirasawa Kotaro,Hu Jinglu
Abstract
A novel optimization method named RasID-GA (an abbreviation of Adaptive Random Search with Intensification and Diversification combined with Genetic Algorithm) is proposed in order to enhance the searching ability of conventional RasID, which is a kind of Random Search with Intensification and Diversification. In this paper, the timing of switching from RasID to GA, or from GA to RasID is also studied. RasID-GA is compared with parallel RasIDs and GA using 23 different objective functions, and it turns out that RasID-GA performs well compared with other methods.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference19 articles.
1. K. Hirasawa, H. Miyazaki, and J. Hu, “Enhancement of RasID and Its Evaluation,” T.SICE, Vol.38, No.9, pp. 775-783, 2002.
2. K. Hirasawa, K. Togo, J. Hu, M. Ohbayashi, and J. Murata, “A New Adaptive Random Search Method in Neural Networks –RasID–,” T.SICE, Vol.34, No.8, pp. 1088-1096, 1998.
3. J. Hu, K. Hirasawa, and J. Murata, “RasID-Random Search for Neural Network Training,” Journal of Advanced Computational Intelligence, Vol.2, No.4, pp. 134-141, 1998.
4. J. Hu and K. Hirasawa, “Adaptive random search approach to identification of neural network model,” Proceedings of the 31st ISCIE international symposium on stochastic systems theory and its applications, Yokohama, pp. 73-78, Nov. 11-12, 1999.
5. D. Sohn, K. Hirasawa, and J. Hu, “Adaptive Random Search with Intensification and Diversification combined with Genetic Algorithm,” Congress on Evolutionary Computation 2005 (CEC2005), pp. 1462-1469, 2005.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stock price prediction using neural networks with RasID-GA;IEEJ Transactions on Electrical and Electronic Engineering;2009-05
2. A Global Optimization Method RasID-GA for Neural Network Training;Journal of Advanced Computational Intelligence and Intelligent Informatics;2008-01-20