Author:
Toh Daisetsu,Bui Pho Van,Yamauchi Kazuto,Sano Yasuhisa, ,
Abstract
In a previous study, we developed an abrasive-free polishing method named catalyst-referred etching (CARE) and used it for the planarization of silicon carbide (SiC) (0001). In this method, Si atoms at step edges are preferentially removed through a catalytically assisted hydrolysis reaction to obtain an atomically smooth and crystallographically well-ordered surface. However, the removal rate is low (< nm/h) and needs to be improved. In this study, we proposed an ultraviolet (UV) light assisted CARE method. In this method, UV light is irradiated onto a SiC surface to generate holes and oxidize the surface. The oxidized area, consisting of SiO2, can be quickly removed to form a nano-pit owing to the higher removal rate of SiO2 compared to that of SiC. The periphery of the nano-pits works as a reaction site, leading to a higher removal rate. To enhance the oxidation rate and form nano-pits, we applied electrochemical bias to the SiC substrate. However, the removal rate did not improve significantly when the bias voltage was higher than 3.0 V. This is because the electrochemical potential of Pt increased with the anodic potential of SiC, which oxidized the Pt surface and degraded the catalyst capability. To avoid this issue, we modified the catalytic pad, where an in-situ refreshment of the Pt surface is possible. As a result, the removal rate increased up to 200 nm/h at a bias of 7.0 V, which is 100 times higher than that of the CARE without UV irradiation. The proposed method is expected to contribute to the enhancement in the productivity and quality of next-generation SiC substrates.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献