Photoelectrochemical Oxidation Assisted Catalyst-Referred Etching for SiC (0001) Surface

Author:

Toh Daisetsu,Bui Pho Van,Yamauchi Kazuto,Sano Yasuhisa, ,

Abstract

In a previous study, we developed an abrasive-free polishing method named catalyst-referred etching (CARE) and used it for the planarization of silicon carbide (SiC) (0001). In this method, Si atoms at step edges are preferentially removed through a catalytically assisted hydrolysis reaction to obtain an atomically smooth and crystallographically well-ordered surface. However, the removal rate is low (< nm/h) and needs to be improved. In this study, we proposed an ultraviolet (UV) light assisted CARE method. In this method, UV light is irradiated onto a SiC surface to generate holes and oxidize the surface. The oxidized area, consisting of SiO2, can be quickly removed to form a nano-pit owing to the higher removal rate of SiO2 compared to that of SiC. The periphery of the nano-pits works as a reaction site, leading to a higher removal rate. To enhance the oxidation rate and form nano-pits, we applied electrochemical bias to the SiC substrate. However, the removal rate did not improve significantly when the bias voltage was higher than 3.0 V. This is because the electrochemical potential of Pt increased with the anodic potential of SiC, which oxidized the Pt surface and degraded the catalyst capability. To avoid this issue, we modified the catalytic pad, where an in-situ refreshment of the Pt surface is possible. As a result, the removal rate increased up to 200 nm/h at a bias of 7.0 V, which is 100 times higher than that of the CARE without UV irradiation. The proposed method is expected to contribute to the enhancement in the productivity and quality of next-generation SiC substrates.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3