Bias-assisted photoelectrochemical planarization of GaN (0001) with impurity concentration distribution

Author:

Toh D.1ORCID,Kayao K.1ORCID,Ohnishi R.1,Osaka A. I.2ORCID,Yamauchi K.13ORCID,Sano Y.1ORCID

Affiliation:

1. Department of Precision Engineering, Graduate School of Engineering, Osaka University 1 , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

2. The Institute of Scientific and Industrial Research, Osaka University 2 , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

3. Research Center for Precision Engineering, Graduate School of Engineering, Osaka University 3 , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

To planarize semiconductor materials such as gallium nitride (GaN) and silicon carbide with high efficiency, we developed a polarization method that combines ultraviolet irradiation and an abrasive-free polishing method known as catalyst-referred etching (CARE). In this method, the substrate surface is photoelectrochemically oxidized, thus improving the removal rate. Accordingly, an atomically well-ordered surface was obtained at a removal rate 100 times higher than that of the conventional CARE method without ultraviolet irradiation. However, in some cases, for GaN substrates with a high oxygen impurity concentration area, the oxidation rate is nonuniform on the substrate surface, resulting in the formation of a rough surface. In this study, we propose the application of a positive bias to the GaN substrate to suppress the oxidation rate fluctuation. In the positive bias state, the width of the depletion layer generated at the interface of GaN and the etchant becomes uniform on the entire surface regardless of crystallographic fluctuation, thereby achieving a uniform oxidation rate. When only 3.0 V was applied, the oxidation rate was uniform; thus, a flat GaN surface without the footprint originating from crystallographic fluctuations was obtained.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3