Fabrication of Ultra-Small-Diameter Optical-Fiber Probe Using Acid-Etch Technique and CO2 Laser for 3D-Micro Metrology

Author:

Murakami Hiroshi,Katsuki Akio,Sajima Takao,Uchiyama Kosuke, ,

Abstract

This paper presents a system for measuring a 3D microstructure using an optical-fiber probe. A stylus shaft was fabricated using an acid-etch technique.We investigated the process of fabricating a stylus tip using an adhesive method, an arc-discharge method, and a CO2-laser technique. The characteristics of the stylus shaft in the process of detecting the displacement were then described. Finally, in the case wherein the stylus tip was fabricated using an adhesive, the deformation of the stylus tip caused by the contraction of an ultraviolet curing resin, which was used to glue the stylus shaft to the stylus sphere, was analyzed using a finite-element method. Accordingly, a stylus shaft and tip with respective diameters of 0.4 μm or greater and 1 μm or greater were manufactured using the adhesive method. Moreover, the results helped confirm that stylus tips with diameters in the ranges of 20–196 and 1.2–300 μm were fabricated using the arc-discharge method and CO2-laser technique, respectively, with high yield. In addition, the results of the finite-element method revealed that the maximum elastic-deformation volume was approximately 0.8 nm and the effect of the contraction of the ultraviolet curing resin is minimal.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3