Author:
Subbian Kanmani Subbu, ,Janakarajan Ramkumar,Santhanagopalan Dhamodaran,
Abstract
Fabricating micro/nano-features in devices and largescale production with short lead times is challenging, and many individual and hybrid processes have been developed to meet this challenge. Among nonconventional processes, micro-electric discharge machining (µ-EDM) has many advantages due to the possibility of precise and accurate 2D and 3D machining of complex shapes. Dry µ-EDM is used to process assembled or semi-assembled products. Attempts are being made to improve the µ-EDM process, and further improvement is possible through better understanding the role of discharge plasma in the machining process. We studied plasma and crater characteristics during dry µ-EDM, calculating plasma parameters for different discharge energies using optical emission spectroscopy. Line pair method and modified Saha equations are used to calculate plasma temperature and electron density respectively. Craters were morphologically analyzed using scanning electron microscopy (SEM), and plasma and crater characteristics on stainless steel and silicon were compared.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference23 articles.
1. L. Alting, F. Kimura et al., “Micro Enginering,” Ann. CIRP, 52-2, pp. 635-657, 2003.
2. M. Imbaby and K. Jiang, “Fabrication Process of 3D Micro Components from Stainless Steel Aqueous Slurry,” Proc. of the World Congress on Engineering, WCE2009, July 1-3, London, U.K., 2009.
3. D. Reynaerts, W. Meeusen et al., “Microstrcturing of Silicon by Electro-Discharge Machining (EDM)-Part I: Theory,” Sens. Actuators, 60, pp. 212-218, 1997.
4. P.-H. Heeran, D. Reynaerts et al., “Microstrcturing of Silicon by Electro-Discharge Machining (EDM)-Part II: Applications,” Sens. Actuators, 61, pp. 379-386, 1997.
5. D. Dornfeld, S. Min et al., “Recent Advances in Mechanical Micromachining,” Ann. CIRP, 55-2, pp. 745-768, 2006.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献