Design and Fabrication of Micro Gripper Using Functional Fluid Power

Author:

Tanaka Yutaka,Suzuki Ryuta,Edamura Kazuya,Yokota Shinichi, , ,

Abstract

Gripping and holding mechanism of automated systems in manufacturing and distribution industries are required to flexibly accommodate various product shapes. In recent years, the gripping and holding mechanisms using jamming transition have been attracting attention because they can grasp objects of various shapes. The jamming gripping mechanism generally requires a mechanical vacuum pump to adjust the internal pressure of the gripping part, and it is difficult to miniaturize the system. An electro-conjugate fluid (ECF), a type of functional fluid, can generate a strong jet flow by applying a high DC voltage between the positive and negative electrodes. The ECF jet flow has a great potential to realize micro fluid power sources. In this paper, we proposed and prototyped a new type of small gripping and holding mechanism that uses the jet flow generated by the ECF and the jamming of granular material. A prototyped micro gripper had an outer diameter of 14 mm, a total length of 40 mm, and a tip diameter of 10 mm for gripping. A mathematical model of the micro gripper was derived by deformation of an elastic membrane and volume and pressure changes. It was verified by the mathematical model that the supplied pressure of the ECF hydraulic power source was large enough to realize gripping performance of the prototyped jamming gripper. The performance of the prototype micro gripper was numerically and experimentally evaluated the mathematical model. It was experimentally clarified that a maximum holding force of the prototyped jamming gripper was shown under the condition that filling rate of granular material was 50%. It was also clarified that the micro gripper with a built-in vacuum pump using the ECF hydraulic power source had a gripping force of up to 93 mN at an applied DC voltage of 4 kV.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3