Author:
Ba Dang Xuan, ,Ahn Kyoung Kwan,Tai Nguyen Trong,
Abstract
This paper presents an integral-type adaptive sliding mode controller integrated into a neural network for position-tracking control of a pneumatic muscle actuator testing system. Stability of the closed-loop system is covered by the sliding mode algorithm while both control error and control energy are minimized by the neural network. With only four weight factors in the hidden layer and two weight factors in the output layer, the network provides a very high calculation speed. Then, the approach is successfully verified on a real-time system under different working conditions. By comparing it with a proportional-integraldifferential controller on the same system and under the same working conditions, the effectiveness of the designed controller is confirmed.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献