Author:
Uneda Michio,Takahashi Naoki,Fujita Takashi,Arai Yutaro, , ,
Abstract
Polishing pad conditioning is essential for achieving stable chemical mechanical polishing (CMP). While diamond disk conditioners (DDCs) are often applied, flexible fiber conditioners (FFCs) have been proposed as a new conditioning tool. FFCs are intended for roughening the pad surface appropriately by bundling fine wire fibers. Our previous study demonstrated the fine conditioning characteristics of FFCs for a hard urethane foam pad. In this study, the conditioning characteristics of an FFC are compared with those of a DDC. First, we evaluate the conditioning performance of an FFC using SUS fibers on a soft urethane foam pad. The result indicates that on a soft pad, the SUS-FFC can restore the pad surface asperities more finely, as confirmed via the stabilized number of contact points based on contact image and luminance value distribution analyses. Subsequently, for a metal-contamination-free FFC process intended for semiconductor CMP, we develop an FFC fabricated using polyether ether ketone (PEEK) and verify its performance via the CMP test of a silicon oxide film. It is shown that the hard pad can be conditioned using the developed PEEK-FFC; this implies that a stable removal rate can be realized immediately after pad break-in conditioning.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference21 articles.
1. W. Izumiya, “A thorough report on investment plans for the semiconductor industry, which is entering an unprecedented boom – A huge market of 100 trillion yen approaching in the 5G revolution – (in Japanese),” Proc. of 187th Meeting of Planarization CMP Committee, pp. 41-54, 2021.
2. S. Kurokawa, “The overview and future prospects for planarization CMP technology,” J. of the Japan Society for Precision Engineering, Vol.84, No.3, pp. 213-216, 2018.
3. N. B. Kenchappa, R. Popuri, A. Chockkalingam, P. Jawali, S. Jayanath, D. Redfield, and R. Bajaj, “Soft chemical mechanical polishing pad for oxide CMP applications,” ECS J. of Solid State Science and Technology, Vol.10, 014008, 2021.
4. G. B. Basim and B. M. Moudgil, “Slurry design for chemical mechanical polishing,” KONA Powder and Particle J., Vol.21, pp. 178-184, 2003.
5. M. Uneda, “Polishing mechanism analysis based on visualizing of consumables effect,” J. of the Japan Society for Precision Engineering, Vol.84, No.3, pp. 225-229, 2018.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献