Improved Method for Synchronizing Motion Accuracy of Linear and Rotary Axes Under Constant Feed Speed Vector at End Milling Point – Investigation of Motion Error Under NC-Commanded Motion –

Author:

Suzuki Takamaru,Yoshikawa Kazuki,Hirogaki Toshiki,Aoyama Eiichi,Ikegami Takakazu, ,

Abstract

A 5-axis machining center (5MC) is noted for its synchronous control capability, making it a feasible tool for quickly and accurately machining complicated three-dimensional surfaces such as propellers and hypoid gears as it is equipped with a direct-drive (DD) motor in the rotary axis. The current research work identified the necessity of improving both the accuracy of the machined shape and the consistency of the free-form machined surface. A method for maintaining the feed speed vector at the milling point by controlling two linear axes and the rotary axis of a 5MC to improve the quality of the machined surface was investigated. Additionally, a method was proposed for reducing the shape error of machined workpieces by considering differences in the servo characteristics of the three axes. The shape error was significantly reduced by applying the proposed method using a precedent control coefficient determined via calculations. To maintain the feed speed vector at the milling point in the machining of complex shapes, rapid velocity change in each axis is often required, leading to inaccuracy caused by torque saturation at a DD motor in the rotary axis. The results of this study indicate that torque saturation can be evaluated via simulation and that the machining accuracy and consistency can be improved by accounting for these errors using the proposed precedent control coefficient method.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3