Improved Synchronous Motion of Linear and Rotary Axes While Avoiding Torque Saturation Under a Constant Feed Speed Vector at the Endmilling Point – Investigation of Motion Error Under Numerical Control Commanded Motion –

Author:

Suzuki Takamaru,Yoshikawa Kazuki,Hirogaki Toshiki,Aoyama Eiichi,Ikegami Takakazu, , ,

Abstract

A five-axis machining center is known for its synchronous control capability, allowing complicated three-dimensional surfaces, such as propellers and hypoid gears, to be quickly created. Prior research has shown that it is necessary to improve not only the machined shape accuracy but also the machined surface roughness of free-form surfaces. Therefore, in this research, we aimed to maintain the feed speed vector at the endmilling point by controlling two linear axes and a rotary axis with a five-axis machining center to improve the machined surface quality. In previous research, we suggested reducing the shape error of machined workpieces (referred to as shape error in this research) by considering the differences in the servo characteristics of the three axes in the machining method. The shape error was significantly decreased by applying the proposed method, which uses a parameter (referred to as precedent control coefficient in this research) determined by calculation, rather than trial and error. Moreover, to maintain the feed speed vector at the endmilling point when machining complex shapes, a rapid velocity change in each axis is required, causing inaccuracy owing to torque saturation. The results of the experiments and simulations of previous research indicated that torque saturation can be evaluated via simulation. In this research, to reduce the shape error while avoiding torque saturation when movement has high angular velocity, we developed a theoretical method to obtain the most suitable precedent control coefficient of each axis by using a block diagram that considers torque saturation. Therefore, both shape error reduction and torque saturation avoidance can be realized by using the proposed method.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3