Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia

Author:

Li Jie12,Lu Zhiyuan12,Yang Yang12,Hou Jinfeng123,Yuan Lingyun123,Chen Guohu123,Wang Chenggang123,Jia Shaoke12,Feng Xuming12,Zhu Shidong123ORCID

Affiliation:

1. Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China

2. Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China

3. Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China

Abstract

Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall–loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra–high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone–cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 “No Rights Reserved” license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021

Funder

Anhui Province Key Research and Development Program

Anhui Province Science and Technology Project

Natural Science Foundation of Anhui Province

Anhui Provincial Education Department Natural Science Research Key Project

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3