Deletion of Two Endo-β-1,4-Xylanase Genes Reveals Additional Isozymes Secreted by the Rice Blast Fungus

Author:

Wu Sheng-Cheng,Ham Kyung-Sik,Darvill Alan G.,Albersheim Peter

Abstract

Fungal pathogens secrete hydrolases during infection of plant tissues capable of fragmenting the primary cell wall polysaccharides of the host. Magnaporthe grisea, the fungal pathogen that causes blast disease of graminaceous monocots, secretes two distinct endo-β-1,4-D-xylanases when grown on xylan-rich rice cell walls as the carbon source. We have previously reported the cloning of the genes encoding these two xylanases, XYL1 and XYL2 (formerly XYN22 and XYN33, respectively; see S.-C. Wu, S. Kauffmann, A. G. Darvill, and P. Albersheim, Mol. Plant-Microbe Interact. 8:506–514, 1995). We now present three M. grisea mutants created by selective deletion of XYL1 and/or XYL2. The xyl1 mutant grows as well as the parent in culture medium when rice cell walls or xylan is the sole carbon source. Under the same conditions, the xyl2 mutant grows slightly slower than the parent, whereas the xyl1/xyl2 double mutant exhibits a 50% reduction in accumulation of total mycelial mass. Under conditions idealized for infection, all three mutants infect host plants as efficiently as the parent, indicating neither XYL1 nor XYL2 is required by M. grisea for infection. Endoxylanase assays showed that, at the stationary stage of growth in culture when the accumulation of total xylanase activity is at its maximum, the xyl1 mutant retains ≈ 88%, xyl2, 39%, and xyl1/xyl2, 19% of the endoxylanase activity of the parent. Partial protein purification of xylanases secreted by the xyl1/xyl2 double mutant revealed four distinct endoxylanase activities. One of the xylanases, XYL3, is present in the culture filtrate of both the parent and the mutant strains, and, like XYL1, has been identified as a member of the Family G xylanases. The other three xylanases are not found in the culture filtrates of the parent or of the xyl1 mutant. Thus, M. grisea appears capable of secreting additional xylanases and does so when XYL2, a member of the Family F glycanases, has been eliminated.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3