Magnaporthe oryzae Chloroplast Targeting Endo-β-1,4-Xylanase I MoXYL1A Regulates Conidiation, Appressorium Maturation and Virulence of the Rice Blast Fungus

Author:

Shabbir Ammarah,Batool Wajjiha,Yu Dan,Lin Lili,An Qiuli,Xiaomin Chen,Guo Hengyuan,Yuan Shuangshuang,Malota Sekete,Wang Zonghua,Norvienyeku JusticeORCID

Abstract

AbstractEndo-β-1,4-Xylanases are a group of extracellular enzymes that catalyze the hydrolysis of xylan, a principal constituent of the plant primary cell wall. The contribution of Endo-β-1,4-Xylanase I to both physiology and pathogenesis of the rice blast fungus M. oryzae is unknown. Here, we characterized the biological function of two endoxylanase I (MoXYL1A and MoXYL1B) genes in the development of M. oryzae using targeted gene deletion, biochemical analysis, and fluorescence microscopy. Phenotypic analysis of ∆Moxyl1A strains showed that MoXYL1A is required for the full virulence of M. oryzae but is dispensable for the vegetative growth of the rice blast fungus. MoXYL1B, in contrast, did not have a clear role in the infectious cycle but has a critical function in asexual reproduction of the fungus. The double deletion mutant was severely impaired in pathogenicity and virulence as well as asexual development. We found that MoXYL1A deletion compromised appressorium morphogenesis and function, leading to failure to penetrate host cells. Fluorescently tagged MoXYL1A and MoXYL1B displayed cytoplasmic localization in M. oryzae, while analysis of MoXYL1A-GFP and MoXYL1B-GFP in-planta revealed translocation and accumulation of these effector proteins into host cells. Meanwhile, sequence feature analysis showed that MoXYL1A possesses a transient chloroplast targeting signal peptide, and results from an Agrobacterium infiltration assay confirmed co-localization of MoXYL1A-GFP with ChCPN10C-RFP in the chloroplasts of host cells. MoXYL1B, accumulated to the cytoplasm of the host. Taken together, we conclude that MoXYL1A is a secreted effector protein that likely promotes the virulence of M. oryzae by interfering in the proper functioning of the host chloroplast, while the related xylanase MoXYL1B does not have a major role in virulence of M. oryzae.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3