Validation of a Decision Support System for Blueberry Anthracnose and Fungicide Sensitivity of Colletotrichum gloeosporioides Isolates

Author:

Gama Andre B.1ORCID,Cordova Leandro G.2ORCID,Rebello Carolina S.1,Peres Natalia A.1ORCID

Affiliation:

1. University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598

2. Corteva Agriscience, Application Technology, Indianapolis, IN 46268

Abstract

Blueberry is an increasingly important crop in Florida. Anthracnose fruit rot (AFR), caused mostly by Colletotrichum gloeosporioides, is favored by long wetness periods and temperatures from 15 to 27°C. Currently, the model in the Strawberry Advisory System (StAS) guides fungicide applications targeting strawberry AFR. Given the similarity between blueberry and strawberry AFR, we hypothesized that the model used in StAS could be used in a decision support system (DSS) built for blueberry AFR. There is no information on inhibition posed by fungicides on C. gloeosporioides isolates from blueberry. Our objectives were to demonstrate that the model used in the StAS could be used for blueberry AFR management in Florida and to assess the sensitivity of isolates to fungicides. Four trials were undertaken in blueberry fields in Florida during two seasons to compare the effectiveness of fungicide applications according to the model with that of the growers’ standard calendar. Sensitivity of blueberry C. gloeosporioides isolates to azoxystrobin, benzovindiflupyr, penthiopyrad, pydiflumetofen, boscalid, thiophanate-methyl, fluazinam, and fludioxonil was evaluated. AFR incidence and yield were compared between treatments. Following recommendations from the model resulted in disease control as effective as the standard program and in some cases with fewer applications. All isolates were sensitive to benzovindiflupyr, penthiopyrad, fluazinam, and fludioxonil. Low frequency of in vitro inhibition of isolates by azoxystrobin, pydiflumetofen, boscalid, and thiophanate-methyl should raise concern about fungicide resistance. Our results indicate that the model used in StAS could be used in a DSS to help Florida growers to manage AFR in blueberry.

Funder

U.S. Department of Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3