Persistence of Fusarium oxysporum f. sp. fragariae in Soil Through Asymptomatic Colonization of Rotation Crops

Author:

Henry Peter M.1ORCID,Pastrana Ana M.1,Leveau Johan H. J.1ORCID,Gordon Thomas R.1

Affiliation:

1. Department of Plant Pathology, University of California, Davis 95616, U.S.A.

Abstract

Asymptomatic plant colonization is hypothesized to enhance persistence of pathogenic forms of Fusarium oxysporum. However, a correlation between pathogen populations on living, asymptomatic plant tissues and soilborne populations after tillage has not been demonstrated. Living and dead tissues of broccoli, lettuce, spinach, wheat, cilantro, raspberry, and strawberry plants grown in soil infested with F. oxysporum f. sp. fragariae (the cause of Fusarium wilt of strawberry) were assayed to quantify the incidence of infection and extent of colonization by this pathogen. All crops could be infected by F. oxysporum f. sp. fragariae but the extent of colonization varied between plant species. Pathogen population densities on nonliving crown tissues incorporated into the soil matrix were typically greater than those observed on living tissues. Crop-dependent differences in the inoculum density of F. oxysporum f. sp. fragariae in soil were only observed after decomposition of crop residue. Forty-four weeks after plants were incorporated into the soil, F. oxysporum f. sp. fragariae soil population densities were positively correlated with population densities on plant tissue fragments recovered at the same time point. Results indicate that asymptomatic colonization can have a significant, long-term impact on soilborne populations of Fusarium wilt pathogens. Cultural practices such as crop rotation should be leveraged to favor pathogen population decline by planting hosts that do not support extensive population growth on living or decomposing tissues.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3