Real-Time PCR Assays for Races of the Spinach Fusarium Wilt Pathogen, Fusarium oxysporum f. sp. spinaciae

Author:

Batson Alex M.1ORCID,Woodhall James W.2ORCID,du Toit Lindsey J.1ORCID

Affiliation:

1. Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273

2. University of Idaho Parma Research and Extension Center, Parma, ID 83360

Abstract

Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is a significant limitation for producers of vegetative spinach and spinach seed crops during warm temperatures and/or on acid soils. Identification of isolates of F. oxysporum f. sp. spinaciae, and distinction of isolates of the two known races, entails time-intensive pathogenicity tests. In this study, two real-time PCR assays were developed: one for a candidate effector gene common to both races of F. oxysporum f. sp. spinaciae, and another for a candidate effector gene unique to isolates of race 2. The assays were specific to isolates of F. oxysporum f. sp. spinaciae (n = 44) and isolates of race 2 (n = 23), respectively. Neither assay amplified DNA from 10 avirulent isolates of F. oxysporum associated with spinach, 57 isolates of other formae speciales and Fusarium spp., or 7 isolates of other spinach pathogens. When the assays were used to detect DNA extracted from spinach plants infected with an isolate of race 1, race 2, or a 1:1 mixture of both races, the amount of target DNA detected increased with increasing severity of wilt. Plants infected with one or both isolates could be distinguished based on the ratio in copy number for each target locus. The real-time PCR assays enable rapid diagnosis of Fusarium wilt of spinach and will facilitate research on the epidemiology and management of this disease, as well as surveys on the prevalence of this understudied pathogen in regions of spinach and/or spinach seed production.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3