CaWRKY28 Cys249 is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum

Author:

Yang Sheng123,Zhang Yangwen123,Cai Weiwei123,Liu Cailing123,Hu Jiong123,Shen Lei123,Huang Xueying123,Guan Deyi123,He Shuilin123ORCID

Affiliation:

1. National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

2. Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

3. Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

Abstract

WRKY transcription factors have been implicated in plant response to pathogens but how WRKY-mediated networks are organized and operate to produce appropriate transcriptional outputs remains largely unclear. Here, we identify a member of the WRKY family from pepper (Capsicum annuum), CaWRKY28, that physically interacts with CaWRKY40, a positive regulator of pepper immunity and thermotolerance. We confirmed CaWRKY28–CaWRKY40 interaction by coimmunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. Our findings supported the idea that CaWRKY28 is a nuclear protein that acts as positive regulator in pepper responses to infection by the pathogenic bacterium Ralstonia solanacearum. It performs its function not by directly modulating the W-box containing immunity-related genes but by promoting CaWRKY40 via physical interaction to bind and activate its immunity-related target genes, including CaPR1, CaNPR1, CaDEF1, and CaABR1, but not its thermotolerance-related target gene, CaHSP24. All of these data indicate that CaWRKY28 interacts with and potentiates CaWRKY40 in regulating immunity against R. solanacearum infection but not thermotolerance. Importantly, we discovered that CaWRKY28 Cys249, shared by CaWRKY28 and its orthologs probably only in the family Solanaceae, is crucial for the CaWRKY28–CaWRKY40 interaction. These results highlight how CaWRKY28 associates with CaWRKY40 during the establishment of WRKY networks, and how CaWRKY40 achieves its functional specificity during pepper responses to R. solanacearum infection. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Natural Science Foundation of China

Development Fund Project of Fujian Agriculture and Forestry University

Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3