Application of Legendre polynomials based neural networks for the analysis of heat and mass transfer of a non-Newtonian fluid in a porous channel

Author:

Khan Naveed AhmadORCID,Sulaiman MuhammadORCID,Kumam PoomORCID,Alarfaj Fawaz Khaled

Abstract

AbstractIn this paper, the mathematical models for flow and heat-transfer analysis of a non-Newtonian fluid with axisymmetric channels and porous walls are analyzed. The governing equations of the problem are derived by using the basic concepts of continuity and momentum equations. Furthermore, artificial intelligence-based feedforward neural networks (ANNs) are utilized with hybridization of a generalized normal-distribution optimization (GNDO) algorithm and sequential quadratic programming (SQP) to study the heat-transfer equations and calculate the approximate solutions for the momentum of a non-Newtonian fluid. Legendre polynomials based Legendre neural networks (LNN) are used to develop a mathematical model for the governing equations, which are further exploited by the global search ability of GNDO and SQP for rapid localization convergence. The proposed technique is applied to study the effect of variations in Reynolds number Re on the velocity profile $(f^{\prime })$ ( f ) and the temperature profile $(q)$ ( q ) . The results obtained by the LeNN-GNDO-SQP algorithm are compared with the differential transformation method (DTM), which shows the stability of the results and the correctness of the technique. Extensive graphical and statistical analyses are conducted in terms of minimum, mean, and standard deviation based on fitness value, absolute errors, mean absolute deviation (MAD), error in the Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE).

Funder

King Mongkut's University of Technology Thonburi

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3