Performance of Heat Transfer in Micropolar Fluid with Isothermal and Isoflux Boundary Conditions Using Supervised Neural Networks

Author:

Sulaiman Muhammad1ORCID,Khan Naveed Ahmad1ORCID,Alshammari Fahad Sameer2ORCID,Laouini Ghaylen3ORCID

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan

2. Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

3. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

Abstract

The current study delivers a numerical investigation on the performance of heat transfer and flow of micropolar fluid in porous Darcy structures with isothermal and isoflux walls (boundary conditions) of a stretching sheet. The dynamics and mechanism of such fluid flows are modelled by nonlinear partial differential equations that are reduced to a system of nonlinear ordinary differential equations by utilizing the porosity of medium and similarity functions. Generally, the explicit or analytical solutions for such nonlinear problems are hard to calculate. Therefore, we have designed a computer or artificial intelligence-based numerical technique. The reliability of neural networks using the machine learning (ML) approach is used with a local optimization technique to investigate the behaviours of different material parameters such as the Prandtl number, micropolar parameters, Reynolds number, heat index parameter, injection/suction parameter on the temperature profile, fluid speed, and spin/rotational behaviour of the microstructures. The approximate solutions determined by the efficient machine learning approach are compared with the classical Runge–Kutta fourth-order method and generalized finite difference approximation on a quasi-uniform mesh. The accuracy of the errors lies around 10−8 to 10−10 between the traditional analytical solutions and machine learning strategy. ML-based techniques solve different problems without discretization or computational work, and are not subject to the continuity or differentiability of the governing model. Moreover, the results are illustrated briefly to help implement microfluids in drug administering, elegans immobilization, and pH controlling processes.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3