EMHD micropolar fluid flowing through a micro‐structural slipped surface with heat source/sink and chemical reaction

Author:

Ramesh Gosikere Kenchappa1ORCID,Hiremath Pradeep N.2,Madhukesh Javali Kotresh3ORCID,Shehzad Sabir Ali4ORCID

Affiliation:

1. Department of Mathematics K.L.E. Society's J.T. College Gadag Karnataka India

2. Department of Mathematics K.L.E. Technological University Hubbali Karnataka India

3. Department of Mathematics Amrita School of Engineering Amrita Vishwa Vidyapeetham Bengaluru India

4. Department of Mathematics COMSATS University Islamabad Sahiwal Pakistan

Abstract

AbstractThe electromagnetohydrodynamic (EMHD) has a vital role due to its importance in aerospace and plasma physics, including energy transformation systems in which interaction between the liquid and magnetic field is crucial. Further, micropolar fluids with microstructural slip is used in the lubrication and liquid crystals. From this observation, the current study is conducted to express an EMHD flow of liquid on a microstructural slipped surface. The effects of a uniform heat source/sink (HS/S) with homogeneous and heterogeneous chemical reactions have been incorporated in energy and mass profiles. The governing equations are converted to ordinary differential equations using proper similarity variables. The converted equations are computed by the implementation of Runge–Kutta–Fehlberg (RKF) 4th 5th order with shooting technique. A list of the essential dimensionless constraints and graphs showing how they are affected are provided. The outcome of the problem shows that the electric parameter will improve the velocity but decline the microrotation profile. Further, both heterogeneous and homogeneous reactions have a decreasing concentration. While the heat distribution rate increases with greater magnetic and electric fields, the surface drag force decreases.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An in‐depth comparative analysis of entropy generation and heat transfer in micropolar‐Williamson, micropolar‐Maxwell, and micropolar‐Casson binary nanofluids within PTSCs;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3