On Convoluted Forms of Multivariate Legendre-Hermite Polynomials with Algebraic Matrix Based Approach

Author:

Riyasat Mumtaz1,Alali Amal S.2ORCID,Wani Shahid Ahmad3ORCID,Khan Subuhi4

Affiliation:

1. Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India

2. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune 412115, India

4. Department of Mathematics, Aligarh Muslim University, Aligarh 202001, India

Abstract

The main purpose of this article is to construct a new class of multivariate Legendre-Hermite-Apostol type Frobenius-Euler polynomials. A number of significant analytical characterizations of these polynomials using various generating function techniques are provided in a methodical manner. These enactments involve explicit relations comprising Hurwitz-Lerch zeta functions and λ-Stirling numbers of the second kind, recurrence relations, and summation formulae. The symmetry identities for these polynomials are established by connecting generalized integer power sums, double power sums and Hurwitz-Lerch zeta functions. In the end, these polynomials are also characterized Svia an algebraic matrix based approach.

Funder

rincess Nourah bint Abdulrahman University

Publisher

MDPI AG

Reference44 articles.

1. Hermite polynomials and some generalizations on the heat equations;Cesarano;Int. J. Syst. Appl. Eng. Dev.,2014

2. Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation;Cesarano;WSEAS Trans. Math.,2014

3. Generalized Bessel functions and generalized Hermite polynomials;Dattoli;J. Math. Anal. Appl.,1993

4. Theory of generalized Hermite polynomials;Dattoli;Comput. Math. Appl.,1994

5. Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations;Dattoli;J. Comput. Appl. Math.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3