Enhancing cotton resilience to challenging climates through genetic modifications

Author:

Ahmed Ali Ijaz,Khan Azeem Iqbal,Negm Mohamed A. M.,Iqbal Rida,Azhar Muhammad Tehseen,Khan Sultan Habibullah,Rana Iqrar AhmadORCID

Abstract

AbstractCotton is one of the most important fiber crops that plays a vital role in the textile industry. Its production has been unstable over the years due to climate change induced biotic stresses such as insects, diseases, and weeds, as well as abiotic stresses including drought, salinity, heat, and cold. Traditional breeding methods have been used to breed climate resilient cotton, but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions. A promising strategy for improving tolerance against these stresses is genetic engineering. This review article discusses the role of genetic engineering in cotton improvement. The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (CRISPR-Cas9), overexpression of target genes, downregulation using RNA interference (RNAi), and virus-induced gene silencing (VIGS). Notably, the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3