The ability of biostimulants and copper-containing fungicide to protect cotton against chilling stress

Author:

Ergin NurgülORCID,Kulan Engin GökhanORCID,Harmanci PınarORCID,Kaya Mehmet DemirORCID

Abstract

Abstract Background Cotton (Gossypium hirsutum L.), adapted to tropical and subtropical regions of the world, is highly sensitive to low temperatures throughout its life cycle. The objective of this study was to evaluate the mitigating effects of different doses of animal-derived (0.25%, 0.50%, and 1.00% Isabion® ), seaweed-based (0.165%, 0.330%, and 0.660% Proton®) biostimulants, as well as a copper (Cu)-containing fungicide application, on cotton cultivar Lazer seedlings at the four true leaves (V4) stage. The plants were exposed to a low temperature of 5 °C for 48 h, and the changes in morphological (seedling fresh and dry weight, plant height, and stem diameter) and physiological parameters (leaf temperature, chlorophyll content, relative water content, electrolyte leakage, and relative injury) were examined. Results The results revealed that chilling stress reduced plant growth, while biostimulants helped protect the plants and overcome the adverse effects of chilling. Under chilling stress, there was a considerable reduction in seedling fresh weight (SFW), seedling dry weight (SDW), plant height (PH), stem diameter (SD), leaf temperature (LT), and relative water content (RWC). Cotton seedlings treated with the animal-derived biostimulants showed significantly enhanced SFW, SDW, PH, SD, LT, chlorophyll content (Chl), electrolyte leakage (EL), and relative injury (RI), although there were no positive changes in RWC. No significant differences in the morphological traits were observed among the doses of seaweed biostimulants. For SDW, PH, EL, and RI, the best results were obtained with the application of a fungicide containing copper. Conclusion These results show the efficiency of the biostimulant and fungicide treatments in mitigating low-temperature stress in cotton seedlings. Applying a copper-containing fungicide to cotton seedlings helped to counteract the negative effects of low-temperature stress and to protect the plants from damage by maintaining electrolyte balance. Among the biostimulant applications, all levels of animal-derived biostimulant applications, as well as the 0.660% level of the seaweed-derived biostimulant, led to increased tolerance of cotton plants to chilling stress.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3