Rule-based classification and mapping of ecosystem services with data on the integrity of forest ecosystems

Author:

Schlutow Angela,Schröder WinfriedORCID

Abstract

Abstract Background The state of ecosystems influences their services for humans. Therefore, the European Union aims to assess and map ecosystem conditions and ecosystem services at the level of the Union and the Member States to implement maintenance or protection measures, if necessary.This paper examines the relationship between forest ecosystem conditions and ecosystem services at the national level, using Germany as an example. The aim is to create a methodology that allows users to understand and predict how the potential supply of selected ecosystem services might change over time under the influence of climate change and atmospheric nitrogen deposition, and that is reproducible, unlike previous approaches. To this end, the methodology was operationalised in a quantitative and rule-based manner. Methods and results The multitude of forest ecosystem types were grouped into 78 classes according to the degree of similarity of their ecological characteristics that influence the provision of ecosystem services. Thereby, ecoclimatic, soil hydrological and nutrient balance characteristics and 12 potential ecosystem service capacities were taken into account. Three potential ecosystem services were quantified for representatives of the ecosystem type classes. The ecosystem service classification was mapped for all of Germany. Conclusions The methodology presented enables a transparent and thus a reproducible classification of current and future ecosystem services

Funder

Umweltbundesamt

Universität Vechta

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioindication for Ecosystem Regeneration towards Natural conditions: the BERN data base and BERN model;Environmental Sciences Europe;2024-01-20

2. Conclusions;SpringerBriefs in Environmental Science;2024

3. Discussion;SpringerBriefs in Environmental Science;2024

4. Data Basis and Mapping Results of Ecosystem Services at Different Levels;SpringerBriefs in Environmental Science;2024

5. Rule-Based Methodology for Ordinating and Classification of Ecosystem Services;SpringerBriefs in Environmental Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3