Reference states of forest ecosystem types and feasibility of biocenotic indication of ecological soil condition as part of ecosystem integrity and services assessment

Author:

Jenssen Martin,Nickel Stefan,Schütze GudrunORCID,Schröder Winfried

Abstract

Abstract Background Structures and functions of ecosystems and, subsequently, their services for human societies may be influenced by climate change and atmospheric deposition. Jenssen et al. (UBA Texte 87/2013: 1–381, 2013) developed a spatially explicit evaluation system enabling the evaluation of ecosystems’ integrity. This methodology is based on a spatially explicit ecosystem classification of forests. Based on the six ecological functions, the methodology enables to compare the ecosystem type-specific integrity at different levels of ecological hierarchy for a reference state (1961–1990) with the further development of the forest ecosystem types as measured for the years 1991–2010 and as modelled for the period 2011–2070. The present study aimed at deepening the methodology and developing it into a practical system for assessing and mapping forest ecosystem integrity and services. The objectives of this advanced investigation were: (1) to quantify the reference conditions for a total of 61 forest ecosystem types; (2) to test the possibility of supplementing the quantification of ecosystem integrity by information on soil biocenoses as yielded by soil monitoring; (3) to model chemical soil indicators and to compare the respective results with those derived by Ellenberg’s indicator values for nutrient state; and (4) to verify the indicator modelling. Results Reference states related to the time prior to 1991 have been quantified for a total of 61 forest ecosystem types covering 85% (81,577 km2) of the mapped forest area of Germany. The reference states comprise statistical indicators for the plant-species diversity (habitat function), for nutrient and water balances and further ecological information as net-primary production and carbon storage. The assignment of lumbricide communities as soil biocenosis indicators was attempted but not succeeded because of insufficient data availability. The nutrient cycle types of the elaborated reference states were characterized by humus form, C/N ratio in topsoil and N indicator values according to Ellenberg et al. (Scr Geobot 18:1–262, 2001). Applying the developed methodology, for 83 out of 105 study plots the reference states prior to 1991 could be determined. Conclusions For complementing forest ecosystem reference states by soil biocenosis indicators it is necessary to further evaluate the primary literature looking for missing observation data. The W.I.E. indicator value applied in this paper to determine topsoil C/N ratios in forests is well suited for area-covering mapping of both near-natural forest–soil states and deposition-induced disharmonic state changes, in which C/N value and base saturation are no longer correlated.

Funder

Umweltbundesamt

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference42 articles.

1. Bücking W (1993) Stickstoff-Immissionen als neuer Standortfaktor in Waldgesellschaften (Nitrogen immissions as a new location factor in forest communities). Phytocoenologia 23:65–94

2. CCE (2012) Modelling and mapping of atmospherically-induced ecosystem impacts in Europe, CCE status report 2012. Coordination Centre for Effects, RIVM, Bilthoven, The Netherlands, p 144

3. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506

4. Ebeling W, Freund J, Schweizer F (1998) Komplexe Strukturen: Entropie und Information (Complex structures: entropy and information). Teubner, Stuttgart, Leipzig

5. EEA (2013) EUNIS habitat classification 2012—a revision of the habitat classification descriptions. https://eunis.eea.europa.eu/references/2416. Accessed 24 Sept 2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3