Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields

Author:

Hama Jawameer R.ORCID,Strobel Bjarne W.

Abstract

Abstract Background Lupin is a promising legume crop, belongs to the Fabaceae (or Leguminosae) family. Lupin production for traditional and functional foods or animal feed is limited, due to the content of toxic quinolizidine (QA)s and indole alkaloids (IA)s. These compounds may not only pose a risk to humans and animals through food consumption, but may also affect soil and aquatic ecosystems. Field experiments were conducted to study the alkaloids content in both narrow-leaved or blue (L. angustifolius) and yellow (L. luteus) lupin plant tissue during a full growing season and understand the environmental fate of alkaloids in soil and water. Suction cups were used to collect soil pore water (soil solution) at four depths: 10, 25, 50 and 70 cm. A full protocol for sample preparation and UPLC–MS/MS quantification of alkaloids in plant, soil and water was developed. Results During the field experiments the alkaloids in the plant tissues increased, at the harvest stage the content was highest with 21.4 and 24.6 mg/kg dry weight (dw) for blue and yellow lupin, respectively. In soil, alkaloids quantified during the growing season (max concentration was 1.3 × 102 µg/kg dw) and even detected after harvest (0.2 µg/kg dw). In soil pore water samples, alkaloids were not detected during summer, but the concentrations increased to 9.8 × 102 and 1.5 × 103 ng/L for blue and yellow, respectively, in September when autumn precipitation began. Conclusions The results show the amount of alkaloids transferred from plant tissue into soil and soil pore water estimated to be on average 0.016% and 0.005% in soil and soil pore water, respectively. Alkaloids leached from topsoil to subsoil layers; the concentrations decline with soil depth. This study demonstrates that alkaloids are mobile compounds in the soil environments, thus lupin production may affect soil or aquatic ecosystems, and reduce water quality.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3