Author:
Jiao Jiachen,Tian Wei,Zhang Lin,Li Bo,Hu Junshan,Li Yufei,Li Dawei,Zhang Jianlong
Abstract
AbstractIndustrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence. However, the low structural stiffness of a robot significantly affects its positional accuracy and the machining quality of its operation equipment. Studying robot stiffness characteristics and optimization methods is an effective method of improving the stiffness performance of a robot. Accordingly, aiming at the poor accuracy of stiffness modeling caused by approximating the stiffness of each joint as a constant, a variable stiffness identification method is proposed based on space gridding. Subsequently, a task-oriented axial stiffness evaluation index is proposed to quantitatively assess the stiffness performance in the machining direction. In addition, by analyzing the redundant kinematic characteristics of the robot machining system, a configuration optimization method is further developed to maximize the index. For numerous points or trajectory-processing tasks, a configuration smoothing strategy is proposed to rapidly acquire optimized configurations. Finally, experiments on a KR500 robot were conducted to verify the feasibility and validity of the proposed stiffness identification and configuration optimization methods.
Funder
National Natural Science Foundation of China
National Defense Basic Scientific Research Program of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献