Gravity-Based Kinetostatic Modeling of Parallel Manipulators Using Screw Theory

Author:

Yang Chao,Huang Fengli,Ye Wei,Chen Qiaohong

Abstract

AbstractThe pose accuracy of parallel manipulators (PMs) is a key index to measure their performance. Establishing the gravity-based kinetostatic model of a parallel robot provides an important basis for its error composition and accuracy improvement. In this paper, a kinetostatic modeling approach that takes real gravity distribution into consideration is proposed to analyze the influence of gravity on the infinitesimal twist and actuator forces of PMs. First, the duality of the twist screw and constraint wrenches are used to derive the gravity-attached constraint wrenches independent of the external load and the limb stiffness matrix corresponding to the kinematics-based constraint wrenches. Second, the gravity model of the mechanism is established based on the screw theory and the principle of virtual work. Finally, the analytical formulas of the infinitesimal twist and the actuator force of PMs are obtained, and the influences of the external load, platform gravity, and rod gravity on the stiffness of the mechanism are decoupled. The non-overconstrained 3RPS and overconstrained 2PRU-UPR PMs are taken as examples to verify the proposed method. This research proposes a methodology to analyze the infinitesimal deformation of the mechanism under the influence of gravity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3