Robust Damage Detection and Localization Under Complex Environmental Conditions Using Singular Value Decomposition-based Feature Extraction and One-dimensional Convolutional Neural Network

Author:

Zong Shengkang,Wang Sheng,Luo Zhitao,Wu Xinkai,Zhang HuiORCID,Ni Zhonghua

Abstract

AbstractUltrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions (EOC), which are inevitable in the normal inspection of civil and mechanical structures. This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network (1D-CNN). After singular value decomposition-based feature extraction processing, a temporal robust damage index (TRDI) is extracted, and the effect of EOCs is well removed. Hence, even for the signals with a very large temperature-varying range and low signal-to-noise ratios (SNRs), the final damage detection and localization accuracy retain perfect 100%. Verifications are conducted on two different experimental datasets. The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises, and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20°C to 60°C. It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly, showing great potential for application in complex and unknown EOC.

Funder

National Natural Science Foundation of China

Key R&D Program of Jiangsu Province, China

Technical Support Special Project of State Administration for Market Regulation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3