Abstract
AbstractUltrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions (EOC), which are inevitable in the normal inspection of civil and mechanical structures. This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network (1D-CNN). After singular value decomposition-based feature extraction processing, a temporal robust damage index (TRDI) is extracted, and the effect of EOCs is well removed. Hence, even for the signals with a very large temperature-varying range and low signal-to-noise ratios (SNRs), the final damage detection and localization accuracy retain perfect 100%. Verifications are conducted on two different experimental datasets. The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises, and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20°C to 60°C. It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly, showing great potential for application in complex and unknown EOC.
Funder
National Natural Science Foundation of China
Key R&D Program of Jiangsu Province, China
Technical Support Special Project of State Administration for Market Regulation
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献